Rider-Ericsson patent transcribed
Posted: Sun Nov 26, 2017 6:33 pm
I'm posting this here so it won't get lost...
xxxxxxxxxxxxxxxxxxx
Stirling Engine, Rider Patents
The Rider engine uses the Stirling engine principle to run. Air inside the cylinder is heated to expand it, then cooled to contract it. The differential pressure is small, so the power density is low, meaning that the engine will be large for a small power output.
The benefits of these engines are that they run very quietly, and that the parameters allow them to use solar heat and air-cooling, plus, they can be made with a low skill level and simple tools.
The Rider engine was quite successful just before the proliferation of electric motors. The coal-fired steam engines that were popular at the time required an expensive certified engineer to run them (due to high pressures), and Stirling engines did not.
Over 30,000 Riders were sold in various sizes, mainly to hotels and railroads. The hotels used them to pump well-water to a rooftop cistern, and it also heated the water in the process. The railroads used them to pump well-water to the elevated water storage tanks, to resupply locomotive steam-water in areas where there were inconsistent winds, which would have negated the use of the preferred windmill for pumping.
The rider uses two vertical/parallel cylinders using the Alpha configuration for air-flow. The hot piston compresses approximately 90-degrees of crank rotation before the cold piston. One cylinder is housed by a water jacket for cooling, the other uses a coal-fired jacket for heating. The crankshaft is at the top of the engine, so the pistons compress downward.
Each cylinder is a closely-fitted annular cylinder-within-a cylinder. As the piston compresses down the central cylinder, the working gas makes a U-turn at the bottom of the cylinder and then flows upward to the top of the cylinder. This is where the gas gains or sheds heat from the outer cylinder walls. When the gas reaches the top of the cylinder, it passes through the regenerator from the hot side to the cold side, back-and forth.
The regenerator is a type of “heat sponge” which increases the efficiency of the engine. The average temperature of the regenerator mass is about halfway between the hot side and cold side. Slow heat transfer from the engine to the internal air-mass is a limiting factor for the engines power output, and the regenerator mass increases the surface area of heat-transfer during the short time the working gas has to perform heat-transfer whether the air is heating or cooling.
An efficient regenerator reduces the engine-size and fuel-consumption for a given output. The Riders regenerator is a group of steel plates set closely together near the top of the two cylinders. The working gas must pass through the regenerator to pass between the hot and cold cylinders.
Both of the pistons are the displacement type, meaning the seals are stationary and located at the top of the two cylinders, and the pistons do not actually touch the cylinder walls. The seals are leather and have a trapezoidal shape to their cross-section, with the long side laying against the piston walls. An external drip of oil keeps the tops of the seals moist.
Using the displacement style of piston has several benefits. The cylinders and pistons can be manufactured from simple pipe sections, with the outer-cylinder ID keeping its stock finish, and then the OD of the piston-pipe being the part that requires honing and polishing. For a builder to improve the finish of a pipes OD, it is much easier than smoothing the ID.
The Rider has an air-pump and relief valve, which are used to maintain a 2-atmospheres of air-mass inside the engine. If additional air-mass is pumped into the engine above one atmosphere, it will increase the power density of the engine. Using more than 2-atmospheres is desirable, but at those pressures, organic oils and greases will ignite. The pump stroke is adjustable to make up for air leakage past the seals, which deteriorate over time (increasing leakage).
A typical rider installation operated a water-pump. The cold well-water was first pumped through the cold-cylinder housing to perform the cooling function, on its way to an elevated water-storage. The later engines used a longer piston than the earlier versions, and this placed the seals father away from the highest heat, which aided seal longevity.
The hot-cylinder seal experienced rapid degradation due to heat, and the later versions of the Rider had an additional small water-jacket around the hot seal. Cold well-water would be pumped through the large main water-jacket around the cold cylinder first, then the warmed water would then flow through the hot seal jacket, and then on to the elevated water-storage.
When contemplating the drawings in the patents, bear in mind there are two separate air-pump types presented as options. The first (Fig-4) is a simple displacement rod-piston pump (which does not require a polished cylinder bore) with stationary seals attached to the pump-cylinder, and using two check-valves.
The second air-pump (Fig-6) is a smooth-bore pump with a sliding seal incorporated into the piston. This pump style uses 3 check-valves and also an air-pressure accumulator. The Fig-6 pump is the better-performing type and is the preferred option, though it is more expensive.
The air-pumps can be adjusted to add air at the point of lowest internal pressure, or, at the point of greatest pressure. The benefit of adding air during the high-pressure power stroke is to allow the engine to run smoother. If adding air at the lowest internal pressure, the benefit is that less auxiliary power is drawn away from the crank, but it will cause the engine to pulse slightly.
The patent text image is somewhat awkward to read, therefore the archive has scanned the images by computer, rather than type them in. As a result, the archives plain-text version contains mis-spellings and various errors. Such as, the letter “C” is sometimes rendered as an “O” and a “6” is sometimes rendered as a “G”.
Also, in the manner of contracts written during this era, the sentences may be unusually long causing a difficulty in maintaining a readers train of thought. I have split various sentences in two, and occasionally updated punctuations to make the original words easier for the modern eye to read. Editors notes shall occasionally be found in [brackets], and no words were changed from the original.
This effort was embarked upon to better understand this engine in its most developed form, so as to enable modern builders to determine where improvements could be made, such as the implementation of Teflon seals and materials such as Stainless-Steel, aluminum, silicone-based lubricants, synthetic high-temperature grease, and various other modern options.
xxxxxxxxxxxxxxxxxxx
Stirling Engine, Rider Patents
The Rider engine uses the Stirling engine principle to run. Air inside the cylinder is heated to expand it, then cooled to contract it. The differential pressure is small, so the power density is low, meaning that the engine will be large for a small power output.
The benefits of these engines are that they run very quietly, and that the parameters allow them to use solar heat and air-cooling, plus, they can be made with a low skill level and simple tools.
The Rider engine was quite successful just before the proliferation of electric motors. The coal-fired steam engines that were popular at the time required an expensive certified engineer to run them (due to high pressures), and Stirling engines did not.
Over 30,000 Riders were sold in various sizes, mainly to hotels and railroads. The hotels used them to pump well-water to a rooftop cistern, and it also heated the water in the process. The railroads used them to pump well-water to the elevated water storage tanks, to resupply locomotive steam-water in areas where there were inconsistent winds, which would have negated the use of the preferred windmill for pumping.
The rider uses two vertical/parallel cylinders using the Alpha configuration for air-flow. The hot piston compresses approximately 90-degrees of crank rotation before the cold piston. One cylinder is housed by a water jacket for cooling, the other uses a coal-fired jacket for heating. The crankshaft is at the top of the engine, so the pistons compress downward.
Each cylinder is a closely-fitted annular cylinder-within-a cylinder. As the piston compresses down the central cylinder, the working gas makes a U-turn at the bottom of the cylinder and then flows upward to the top of the cylinder. This is where the gas gains or sheds heat from the outer cylinder walls. When the gas reaches the top of the cylinder, it passes through the regenerator from the hot side to the cold side, back-and forth.
The regenerator is a type of “heat sponge” which increases the efficiency of the engine. The average temperature of the regenerator mass is about halfway between the hot side and cold side. Slow heat transfer from the engine to the internal air-mass is a limiting factor for the engines power output, and the regenerator mass increases the surface area of heat-transfer during the short time the working gas has to perform heat-transfer whether the air is heating or cooling.
An efficient regenerator reduces the engine-size and fuel-consumption for a given output. The Riders regenerator is a group of steel plates set closely together near the top of the two cylinders. The working gas must pass through the regenerator to pass between the hot and cold cylinders.
Both of the pistons are the displacement type, meaning the seals are stationary and located at the top of the two cylinders, and the pistons do not actually touch the cylinder walls. The seals are leather and have a trapezoidal shape to their cross-section, with the long side laying against the piston walls. An external drip of oil keeps the tops of the seals moist.
Using the displacement style of piston has several benefits. The cylinders and pistons can be manufactured from simple pipe sections, with the outer-cylinder ID keeping its stock finish, and then the OD of the piston-pipe being the part that requires honing and polishing. For a builder to improve the finish of a pipes OD, it is much easier than smoothing the ID.
The Rider has an air-pump and relief valve, which are used to maintain a 2-atmospheres of air-mass inside the engine. If additional air-mass is pumped into the engine above one atmosphere, it will increase the power density of the engine. Using more than 2-atmospheres is desirable, but at those pressures, organic oils and greases will ignite. The pump stroke is adjustable to make up for air leakage past the seals, which deteriorate over time (increasing leakage).
A typical rider installation operated a water-pump. The cold well-water was first pumped through the cold-cylinder housing to perform the cooling function, on its way to an elevated water-storage. The later engines used a longer piston than the earlier versions, and this placed the seals father away from the highest heat, which aided seal longevity.
The hot-cylinder seal experienced rapid degradation due to heat, and the later versions of the Rider had an additional small water-jacket around the hot seal. Cold well-water would be pumped through the large main water-jacket around the cold cylinder first, then the warmed water would then flow through the hot seal jacket, and then on to the elevated water-storage.
When contemplating the drawings in the patents, bear in mind there are two separate air-pump types presented as options. The first (Fig-4) is a simple displacement rod-piston pump (which does not require a polished cylinder bore) with stationary seals attached to the pump-cylinder, and using two check-valves.
The second air-pump (Fig-6) is a smooth-bore pump with a sliding seal incorporated into the piston. This pump style uses 3 check-valves and also an air-pressure accumulator. The Fig-6 pump is the better-performing type and is the preferred option, though it is more expensive.
The air-pumps can be adjusted to add air at the point of lowest internal pressure, or, at the point of greatest pressure. The benefit of adding air during the high-pressure power stroke is to allow the engine to run smoother. If adding air at the lowest internal pressure, the benefit is that less auxiliary power is drawn away from the crank, but it will cause the engine to pulse slightly.
The patent text image is somewhat awkward to read, therefore the archive has scanned the images by computer, rather than type them in. As a result, the archives plain-text version contains mis-spellings and various errors. Such as, the letter “C” is sometimes rendered as an “O” and a “6” is sometimes rendered as a “G”.
Also, in the manner of contracts written during this era, the sentences may be unusually long causing a difficulty in maintaining a readers train of thought. I have split various sentences in two, and occasionally updated punctuations to make the original words easier for the modern eye to read. Editors notes shall occasionally be found in [brackets], and no words were changed from the original.
This effort was embarked upon to better understand this engine in its most developed form, so as to enable modern builders to determine where improvements could be made, such as the implementation of Teflon seals and materials such as Stainless-Steel, aluminum, silicone-based lubricants, synthetic high-temperature grease, and various other modern options.